Remove Noise from Fluorescence Signal of Mineral Oil in Water Using Stationary Wavelet Transform and Wavelet Entropy
نویسندگان
چکیده
In the fluorescence detection system, noise will affect the sensitivity of the system. The method using Stationary Wavelet Transform to de-noise fluorescence signals based on adaptive wavelet entropy is studied. The de-noising effects of dbN families are compared, and then the db7 wavelet is chosen as the optimal wavelet. The noised fluorescence signal is decomposed at 5 levels via Discrete Wavelet Transform or Stationary Wavelet Transform. The thresholded detail coefficients are reconstructed with the approximation coefficients to produce the pure fluorescence signal. It is verified that the de-noising method via Stationary Wavelet Transform has better effect than Discrete Wavelet Transform.
منابع مشابه
Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning
Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...
متن کاملAdaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning
Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...
متن کاملAssessment of the Wavelet Transform for Noise Reduction in Simulated PET Images
Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...
متن کاملAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملQuantitative Assessment of Conventional and Modern De-Noising on Nuclear Medicine Images
Introduction: One of the major problems in the development of nuclear medicine images is the presence of noise. The noise level in nuclear medicine images is usually reduced by the analysis of imaging data in a Fourier transform environment. The main drawback of this environment belongs to low signal to noise ratio in high frequencies because removing noise frequencies may remove data and times...
متن کامل